Publications
Publications
Nürnberg, G.K. 2025. Lake Functioning: Internal Phosphorus Loading, Cyanobacteria, and Climate Change. CRC Press. 298 p. www.routledge.com/9781032294407
Tammeorg, O., Nürnberg, G., Horppila, J., Tammeorg, P., Jilbert, T., Nõges, P., 2024. Linking sediment geochemistry with catchment processes, internal phosphorus loading and lake water quality. Water Research 263, 122157. https://doi.org/10.1016/j.watres.2024.122157
Tammeorg, O., Nürnberg, G., Tõnno, I., Toom, L., Nõges, P., 2024. Spatio-temporal variations in sediment phosphorus dynamics in a large shallow lake: Mechanisms and impacts of redox-related internal phosphorus loading. Science of The Total Environment 907, 168044. https://doi.org/10.1016/j.scitotenv.2023.168044
Tammeorg, O., Chorus, I., Spears, B., Nõges, P., Nürnberg, G., Tammeorg, P., Søndergaard, M., Jeppesen, E., Paerl, H., Huser, B., Horppila, J., Jilbert, T., Budzynska, A., Dondajewska-Pielka, R., Goldyn, R., Haasler, S., Hellsten, S., Härkönen, L.H., Kiani, M., Kozak, A., Kotamäki, N., Kowalczewska-Madura, K., Newell, S., Nurminen, L., Nõges, T., Reitzel, K., Rosinska, J., Ruuhij ärvi, J., Silvonen, S., Skov, C., Vazic, T., Ventelä, A., Waajen, G., Lürling, M., 2023. Sustainable lake restoration: From challenges to solutions. WIREs Water e1689. https://doi.org/10.1002/wat2.1689
Tammeorg, O., Nürnberg, G., Tõnno, I., Kisand, A., Tuvikene, L., Nõges, T., Nõges, P., 2022a. Sediment phosphorus mobility in Võrtsjärv, a large shallow lake: Insights from phosphorus sorption experiments and long-term monitoring. Science of The Total Environment 154572.
Tammeorg, O., Nürnberg, G.K., Nõges, P., Niemistö, J., 2022b. The role of humic substances in sediment phosphorus release in northern lakes. Science of The Total Environment 833, 155257. https://doi.org/10.1016/j.scitotenv.2022.155257
Tammeorg, O., Nürnberg, G., Horppila, J., Haldna, M., Niemistö, J., 2020a. Redox-related release of phosphorus from sediments in large and shallow Lake Peipsi: Evidence from sediment studies and long-term monitoring data. Journal of Great Lakes Research 46, 1595-1603. https://doi.org/10.1016/j.jglr.2020.08.023
Tammeorg, O., Nürnberg, G., Niemistö, J., Haldna, M., Horppila, J., 2020b. Internal phosphorus loading due to sediment anoxia in shallow areas: implications for lake aeration treatments. Aquatic Sciences 82. https://doi.org/10.1007/s00027-020-00724-0
Ventelä, A.-M., Ekholm, P., Kirkkala, T., Lehtoranta, J., Nürnberg, G.K., Tarvainen, M., Sarvala, J., 2020. A review of internal phosphorus loading evidence in Säkylän Pyhäjärvi, Finland. In ‘A.D. Steinman and B.M. Spears (Eds.), Internal Phosphorus Loading: Causes, Case Studies, and Management’ ‘Chapter 18’. J. Ross Publishing, Plantation, FL, pp. 345-357.
Nürnberg, G.K. 2020. Internal phosphorus loading models: A critical review. In: A.D. Steinman and B.M. Spears (Eds.), Internal Phosphorus Loading: Causes, case studies, and management. Plantation, FL: J. Ross Publishing. p. 45-62.
–. 2020. Observed and modelled internal phosphorus loads in stratified and polymictic basins of a mesotrophic lake. In: A.D. Steinman and B.M. Spears (Eds.), Internal Phosphorus Loading: Causes, case studies, and management. Plantation, FL: J. Ross Publishing. p. 111-123.
–. 2019. Quantification of Anoxia and Hypoxia in Water Bodies (2). In: Water Encyclopedia. John Wiley & Sons, Inc. DOI 10.1002/9781119300762.wsts0081
–. 2019. Hypolimnetic withdrawal as a lake restoration technique: Determination of feasibility and continued benefits. Hydrobiologia 00:000-000
–, T. Howell, M. Palmer. 2019. 28 years of impact from Central Basin hypoxia and internal phosphorus loading on north shore water quality in Lake Erie. Inland Waters 9: 362-373. doi.org/10.1080/20442041.2019.1568072
–. R. Fischer, A. Paterson. 2018. Reduced phosphorus retention by anoxic bottom sediments after the remediation of an industrial acidified lake area: Indications from P, Al, and Fe sediment fractions. Science of the Total Environment 626: 412–422.
–. 2017. Attempted management of cyanobacteria by Phoslock (lanthanum-modified clay) in Canadian lakes, water quality results and predictions. Lake and Reservoir Management 33, 163-170. DOI: 10.1080/10402381.2016.1265618
–. and B.D. LaZerte. 2016. Trophic state decrease after lanthanum-modified bentonite (Phoslock) application to a hyper-eutrophic polymictic urban lake frequented by Canada geese (Branta canadensis). Lake and Reservoir Management 32, 74-88. DOI: 10.1080/10402381.2015.1133739
–. 2016. More than 20 years of estimated internal phosphorus loading in polymictic, eutrophic Lake Winnipeg, Manitoba. J. Great Lakes Res. 42, 18-27. DOI: 10.1016/j.jglr.2015.11.003
Spears, B.M., E.B. Mackay, S. Yasseri, I.D.M. Gunn, K.E. Waters, C. Andrews, S. Cole, M. de Ville, A. Kelly, S. Meis, A.L. Moore, G.K. Nürnberg, F. van Oosterhout, J.-A. Pitt, G. Madgwick, H.J. Woods and M. Lürling. 2016. A meta-analysis of water quality and aquatic macrophyte responses in 18 lakes treated with lanthanum modified bentonite (PHOSLOCK®). Water Research. DOI: 10.1016/j.watres.2015.08.020
–, B.D. LaZerte, P.S. Loh, L.A. Molot. 2013. Quantification of internal phosphorus load in large, partially polymictic and mesotrophic Lake Simcoe, Ontario. J Great Lakes Res 39, 271-279.
–, L.A. Molot, E. O’Connor, H. Jarjanazi, J.G. Winter and J.D. Young. 2013. Evidence for internal phosphorus loading, hypoxia and effects on phytoplankton in partially polymictic Lake Simcoe, Ontario. J Great Lakes Res 39, 259-270.
Loh, P.S., L.A. Molot, G.K. Nürnberg, S.B. Watson and B. Ginn. 2013. Evaluating relationships between sediment chemistry and anoxic phosphorus and iron release across three different water bodies. Inland Waters 3, 105-117.
–, M. Tarvainen, A.-M. Ventelä and J. Sarvala. 2012. Internal phosphorus load estimation during biomanipulation in a large polymictic and mesotrophic lake Inland Waters 2, 147-162.
Labrecque V, G.K. Nürnberg, R. Tremblay and R. Pienitz. 2012. Caractérisation de la charge interne de phosphore du lac Nairne, Charlevoix, Québec (in French). - Internal phosphorus load assessment of Lake Nairne, Charlevoix, Quebec. Rev. Sci. L’Eau: 25 (1):77-93.
–. 2009. Assessing internal phosphorus load – problems to be solved, Lake and Reservoir Management, 25(4): 419-432.
Conley, D.J., S. Björck, E. Bonsdorff, J. Carstensen, G. Destouni, B.G. Gustafsson, S. Hietanen, M. Kortekaas, H. Kuosa, H.E.M. Meier, B. Müller-Karulis, K. Nordberg, A. Norkko, G.K. Nürnberg, H. Pitkänen, N.N. Rabalais, R. Rosenberg, O.P. Savchuk, C.P. Slomp, M. Voss, F. Wulff and L. Zillén. 2009. Critical Review: Hypoxia-related processes in the Baltic Sea. Environ. Sci. Technol. 43: 3412-3420.
Cyr, H., S.K. McCabe and G.K. Nürnberg. 2009. Phosphorus sorption experiments and the potential for internal phosphorus loading in littoral areas of a stratified lake. Water Res. 43:1654-1666
–. 2007. Low-Nitrate-Days (LND), a potential indicator of cyanobacteria blooms in a eutrophic hardwater reservoir. Water Quality Research Journal of Canada 42: 269-283.
–. Lake responses to long-term hypolimnetic withdrawal treatments. Lake and Reservoir Management 23: 388-409.
–. 2005. Quantification of internal phosphorus loading in polymictic lakes. Verhandlungen Internationalen Vereinigung Limnologie (SIL) 29: 623-626.
Cyr, H. and G.K. Nürnberg. 2005. Methodological biases in phosphate sorption experiments. p. 55-66 in L. Serrano and H.L. Golterman (editors), Phosphates in Sediments, Proceedings of the 4th International Symposium. Backhuys Publishers, the Netherlands.
–. 2004. Quantified hypoxia and anoxia in lakes and reservoirs. TheScientificWorld 4, 42-54.
–. 2005. Internal phosphorus loading or “the devil is in the sediments”. Lake Stewardship Newsletter, 9-10.
– and B.D. LaZerte. 2004. Modeling the effect of development on internal phosphorus load in nutrient-poor lakes. Water Resources Research 40: W01105. doi:10.1029/2003WR002410
Havens K.E. and G.K. Nürnberg. 2004. The Phosphorus-Chlorophyll Relationship in Lakes: Potential Influences of Color and Mixing Regime. Lake and Reservoir Management 20, 000-000.
– and B.D. LaZerte. 2003/4. Ontario lakes: The importance of lake management. NALMS Lakeline 23 (4): 32-37.
–,B.D. LaZerte and D.D. Olding. 2003. An artificially induced Planktothrix rubescens surface bloom in a small kettle lake in southern Ontario compared to blooms world-wide. Lake and Reservoir Management 19: 307-322.
–. 2002. Probability of winterkill in Central Ontario lakes. Newsletter of the American Fisheries Society Southern Ontario Chapter, Sep 2002: 2-3
–. 2002. Quantification of oxygen depletion in lakes and reservoirs with the hypoxic factor. Lake and Reservoir Management 18, 298-305.
–. 2001. Eutrophication and Trophic State - Why does lake water (quality) differ from lake to lake? NALMS Lakeline 21(1): 29-33.
– and B.D. LaZerte. 2001. Predicting Water Quality, Chapter 5, p. 139-163 in C. Holdren, B. Jones and J. Taggert (eds.), Managing Lakes and Reservoirs, 3rd ed., North American Lake Management Society, Terrene Inst. and US-EPA, EPA 841-B-01-006.
–. 1999. Determining trophic state in experimental lakes. - Comment. Limnology and Oceanography 44: 1176-1179.
– and M. Shaw. 1999. Productivity of clear and humic lakes: nutrients, phytoplankton, bacteria. Hydrobiologia 382: 97-112.
–. 1998. Prediction of annual and seasonal phosphorus concentrations in stratified and polymictic lakes. Limnology and Oceanography 43: 1544-1552.
–. 1997. Coping with water quality problems due to hypolimnetic anoxia in Central Ontario Lakes. Water Quality Research Journal of Canada 32: 391-405.
–. 1996. Trophic state of clear and coloured, soft-and hardwater lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake and Reservoir Management 12: 432-447.
–. 1996. Comment: Phosphorus budgets and stoichiometry during the open-water season in two unmanipulated lakes in the Experimental Lakes Area, northwestern Ontario. Canadian J. Fisheries Aquatic Science 53: 1469-1471.
–. 1995. Quantifying anoxia in lakes. Limnology and Oceanography 40: 1100-1111.
–. 1995. Anoxic factor, a quantitative measure of anoxia and fish species richness in Central Ontario lakes. Transactions of the American Fisheries Society 124: 677-686.
–. 1994. Phosphorus release from anoxic sediments: What we know and how we can deal with it. Limnetica 10: 1-4.
– and P.J. Dillon. 1993. Iron budgets in temperate lakes. Canadian J. Fisheries Aquatic Science 50: 1728-1737.
–. 1991. Phosphorus from internal sources in the Laurentian Great Lakes, and the concept of threshold external load. J. Great Lakes Research 17: 132-140.
–. 1988. The prediction of phosphorus release rates from total and reductant-soluble phosphorus in anoxic lake sediments. Can. J. Fisheries Aquatic Science 45: 453-462.
–. 1988. A simple model for predicting the date of fall turnover in thermally stratified lakes. Limnology and Oceanography 33: 1190-1195.
–. 1987. A comparison of internal phosphorus loads in lakes with anoxic hypolimnia: laboratory incubations versus hypolimnetic phosphorus accumulation. Limnology and Oceanography 32: 1160-1164.
–. 1987. Hypolimnetic withdrawal as a lake restoration technique. American Society of Civil Engineers, J. Environmental Engineering Division 113: 1006-1017.
–, R. Hartley and E. Davis. 1987. Hypolimnetic withdrawal in two North American lakes with anoxic phosphorus release from the sediment. Water Research 21: 923-928.
–, M. Shaw, P.J. Dillon and D.J. McQueen. 1986. Internal phosphorus load in an oligotrophic Precambrian Shield lake with an anoxic hypolimnion. - Canadian J. Fisheries Aquatic Science 43: 574-580.
–. 1985. Availability of phosphorus upwelling from iron-rich anoxic hypolimnia. Archive Hydrobiologia 104: 459-476.
– and Peters, R.H. 1984: Biological availability of soluble reactive phosphorus in anoxic and oxic freshwaters. - Canadian J. Fisheries Aquatic Science 41: 757-765.
–. 1984: The importance of internal phosphorus load to the eutrophication of lakes with anoxic hypolimnia. - Verhandlungen Internationalen Vereinigung Limnologie 22: 190-194.
–. 1984. The prediction of internal phosphorus load in lakes with anoxic hypolimnia. - Limnology and Oceanography 29: 111-124.
– 1984. Iron and hydrogen sulfide interference in the analysis of SRP in anoxic waters. - Water Research 20: 369-377.